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12. Integers
Learning objectives:

• integers and their operations

• Euclidean algorithm

• Sieve of Eratosthenes

• large integers

• modular arithmetic

• Chinese remainder theorem

• random numbers and their generators

Operations on integers

Five basic operations account for the lion's share of integer arithmetic:

+ – · div mod

The product 'x · y', the quotient 'x div y', and the remainder 'x mod y' are related through the following div-mod 

identity:

(1)  (x div y) · y + (x mod y) = x for y ≠ 0.

Many  programming  languages  provide  these  five  operations,  but  unfortunately,  'mod'  tends  to  behave 

differently not only between different languages but also between different implementations of the same language.  

How come have we not learned in school what the remainder of a division is?

The div-mod identity, a cornerstone of number theory, defines 'mod' assuming that all the other operations are  

defined. It is mostly used in the context of nonnegative integers x ≥ 0, y > 0, where everything is clear, in particular 

the convention 0 ≤ x mod y < y. One half of the domain of integers consists of negative numbers, and there are good  

reasons for extending all five basic operations to the domain of all integers (with the possible exception of y = 0),  

such as:

• Any operation with an undefined result hinders the portability and testing of programs: if the "forbidden" 

operation does get executed by mistake, the computation may get into nonrepeatable states. Example: from 

a practical point of view it is better not to leave 'x div 0' undefined, as is customary in mathematics, but to  

define the result as '= overflow', a feature typically supported in hardware.

• Some algorithms that we usually consider in the context of nonnegative integers have natural extensions 

into the domain of all integers (see the following sections on 'gcd' and modular number representations).

Unfortunately, the attempt to extend 'mod' to the domain of integers runs into the problem mentioned above: 

How  should  we  define  'div'  and  'mod'?  Let's  follow  the  standard  mathematical  approach  of  listing  desirable  

properties these operations might possess. In addition to the "sacred" div-mod identity (1) we consider:

(2) Symmetry of div: (–x) div y = x div (–y) = –(x div y).

The most plausible way to extend 'div' to negative numbers.
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(3) A constraint on the possible values assumed by 'x mod y', which, for y > 0, reduces to the convention of  

nonnegative remainders:

0 ≤ x mod y < y.

This is important because a standard use of 'mod' is to partition the set of integers into y residue classes. We 

consider a weak and a strict requirement:

(3') Number of residue classes = |y|: for given y and varying x, 'x mod y' assumes exactly |y| distinct values.

(3") In addition, we ask for nonnegative remainders: 0 ≤ x mod y < |y|.

Pondering  the consequences  of  these desiderata,  we soon realize  that  'div'  cannot  be  extended  to negative  

arguments by means of symmetry.  Even the relatively innocuous case of  positive denominator y > 0 makes it 

impossible to preserve both (2) and (3"), as the following failed attempt shows:

((–3) div 2) · 2 + ((–3) mod 2) ?=? –3 Preserving (1)

(–(3 div 2)) · 2 + 1 ?=? –3 and using (2) and (3")

(–1) · 2 + 1 ≠ –3 … fails!

Even the weak condition (3'), which we consider essential, is incompatible with (2). For y = –2, it follows from  

(1) and (2) that there are three residue classes modulo (–2): x mod (–2) yields the values 1, 0, –1; for example,

1 mod (–2) = 1, 0 mod (–2) = 0, (–1) mod (–2) = –1.

This does not go with the fact that 'x mod 2' assumes only the two values 0, 1. Since a reasonable partition into  

residue classes is more important than the superficially appealing symmetry of 'div', we have to admit that (2) was  

just wishful thinking.

Without giving any reasons, [Knu 73a] (see the chapter "Reducing a task to given primitives;  programming 

motion) defines 'mod' by means of the div-mod identity (1) as follows:

x mod y = x – y ·  x / y , if y ≠ 0; x mod 0 = x;

Thus he implicitly defines x div y =  x / y , where  z , the "floor" of z, denotes the largest integer ≤ z; the "ceiling" 

 z  denotes the smallest integer ≥ z. Knuth extends the domain of 'mod' even further by defining "x mod 0 = x". 

With the exception of this special case y = 0, Knuth's definition satisfies (3'): Number of residue classes = |y|. The 

definition does not satisfy (3"), but a slightly more complicated condition. For given y ≠ 0, we have 0 ≤ x mod y < y,  

if y > 0; and 0 ≥ x mod y > y, if y < 0. Knuth's definition of 'div' and 'mod' has the added advantage that it holds for  

real numbers as well, where 'mod' is a useful operation for expressing the periodic behavior of functions [e.g. tan x 

= tan (x mod π)].

Exercise: another definition of 'div' and 'mod'

1. Show that the definition 

in conjunction with the div-mod identity (1) meets the strict requirement (3").
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Solution 

Exercise

Fill out comparable tables of values for Knuth's definition of 'div' and 'mod'.

Solution

 

The Euclidean algorithm

A famous algorithm for computing the greatest common divisor (gcd) of two natural numbers appears in Book 7  

of Euclid's Elements (ca. 300 BC). It is based on the identity gcd(u, v) = gcd(u – v, v), which can be used for u > v to  

reduce the size of the arguments, until the smaller one becomes 0.

We use these properties of the greatest common divisor of two integers u and v > 0:

gcd(u, 0) = u By convention this also holds for u = 0.

gcd(u, v) = gcd(v, u) Permutation of arguments, important for the termination of the following procedure.

gcd(u, v) = gcd(v, u – q · v) For any integer q.

The formulas above translate directly into a recursive procedure:
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function gcd(u, v: integer): integer;

begin

if  v = 0  then  return(u)  else  return(gcd(v, u mod v))

end;

A test for the relative size of u and v is unnecessary. If initially u < v, the first recursive call permutes the two  

arguments, and thereafter the first argument is always larger than the second.

This simple and concise solution has a relatively high implementation cost. A stack, introduced to manage the 

recursive  procedure calls,  consumes space and time.  In addition to the operations visible  in the code (test for 

equality, assignment, and 'mod'), hidden stack maintenance operations are executed. There is an equally concise 

iterative version that requires a bit more thinking and writing, but is significantly more efficient:

function gcd(u, v: integer): integer;

var  r: integer;

begin

while  v ≠ 0  do  { r := u mod v;  u := v;  v := r };

return(u)

end;

The prime number sieve of Eratosthenes

The oldest and best-known algorithm of type sieve is named after Eratosthenes (ca. 200 BC). A set of elements is  

to be separated into two classes, the "good" ones and the "bad" ones. As is often the case in life, bad elements are 

easier to find than good ones. A sieve process successively eliminates elements that have been recognized as bad; 

each element eliminated helps in identifying further bad elements. Those elements that survive the epidemic must 

be good.

Sieve algorithms are often applicable when there is a striking asymmetry in the complexity or length of the 

proofs of the two assertions "p is a good element" and "p is a bad element". This theme occurs prominently in the  

complexity theory of problems that appear to admit only algorithms whose time requirement grows faster than 

polynomially in the size of  the input (NP completeness).  Let us illustrate this  asymmetry in the case of prime  

numbers, for which Eratosthenes' sieve is designed. In this analogy, "prime" is "good" and "nonprime" is "bad".

A prime is a positive integer greater than 1 that is divisible only by 1 and itself. Thus primes are defined in terms 

of their lack of an easily verified property: a prime has no factors other than the two trivial ones. To prove that 1 675  

307 419 is not prime, it suffices to exhibit a pair of factors:

1 675 307 419 = 1 234 567 · 1 357.

This verification can be done by hand. The proof that 217 – 1 is prime, on the other hand, is much more elaborate. 

In general (without knowledge of any special property this particular number might have) one has to verify, for 

each and every number that qualifies as a candidate factor, that it is not a factor. This is obviously more time  

consuming than a mere multiplication.

Exhibiting factors through multiplication is an example of what is sometimes called a "one-way" or "trapdoor" 

function: the function is  easy to evaluate (just one multiplication),  but its  inverse is  hard.  In this context,  the 

inverse  of  multiplication  is  not  division,  but  rather  factorization.  Much of  modern cryptography relies  on the 

difficulty of factorization.

The prime number sieve of Eratosthenes works as follows. We mark the smallest prime, 2, and erase all of its 

multiples within the desired range 1 .. n. The smallest remaining number must be prime; we mark it and erase its  
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multiples. We repeat this process for all numbers up to √n: If an integer c < n can be factored, c = a · b, then at least  

one of the factors is <√n.

{ sieve of Eratosthenes marks all the primes in 1 .. n }

const  n = … ;

var sieve: packed array [2 .. n] of boolean;

p, sqrtn, i: integer;

…

begin

for  i := 2  to  n  do  sieve[i] := true;  { initialize the 

sieve }

sqrtn := trunc(sqrt(n));

{ it suffices to consider as divisors the numbers up to √ n }

p := 2;

while  p ≤ sqrtn  do  begin

i := p · p;

while  i ≤ n  do  { sieve[i] := false;  i := i + p };

repeat  p := p + 1  until  sieve[p];

end;

end;

Large integers

The range of numbers that can be represented directly in hardware is typically limited by the word length of the 

computer. For example, many small computers have a word length of 16 bits and thus limit integers to the range –

215 ≤ a < +215 =32768. When the built-in number system is insufficient, a variety of software techniques are used to 

extend its range. They differ greatly with respect to their properties and intended applications, but all of them come  

at an additional cost in memory and, above all, in the time required for performing arithmetic operations. Let us 

mention the most common techniques.

Double-length or double-precision integers.  Two words are  used to hold an integer that squares  the 

available range as compared to integers stored in one word. For a 16-bit computer we get 32-bit integers, for a 32-

bit computer we get 64-bit integers. Operations on double-precision integers are typically slower by a factor of 2 to 

4.

Variable precision integers. The idea above is extended to allocate as many words as necessary to hold a 

given  integer.  This  technique  is  used  when the  size  of  intermediate  results  that  arise  during  the  course  of  a  

computation is unpredictable. It calls for list processing techniques to manage memory. The time of an operation  

depends on the size of its arguments: linearly for addition, mostly quadratically for multiplication.

Packed BCD integers. This is a compromise between double precision and variable precision that comes from  

commercial data processing. The programmer defines the maximal size of every integer variable used, typically by  

giving the maximal number of decimal digits that may be needed to express it. The compiler allocates an array of  

bytes to this variable that contains the following information: maximal length, current length, sign, and the digits.  

The latter are stored in BCD (binary-coded decimal) representation: a decimal digit is coded in 4 bits, two of them  

are packed into a byte. Packed BCD integers are expensive in space because most of  the time there is  unused 

allocated  space;  and  even  more  so  in  time,  due  to  digit-by-digit  arithmetic.  They  are  unsuitable  for  lengthy 

scientific/technical computations, but OK for I/O-intensive data processing applications.
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Modular number systems: the poor man's large integers

Modular arithmetic is a special-purpose technique with a narrow range of applications, but is extremely efficient 

where it applies—typically in combinatorial and number-theoretic problems. It handles addition, and particularly 

multiplication,  with  unequaled  efficiency,  but  lacks  equally  efficient  algorithms  for  division  and  comparison. 

Certain  combinatorial  problems  that  require  high  precision  can  be  solved  without  divisions  and  with  few 

comparisons; for these, modular numbers are unbeatable.

Chinese Remainder Theorem:  Let m1, m2, … ,  mk be pairwise  relatively prime positive  integers,  called 

moduli. Let m = m1 · m2 · … · mk be their product. Given k positive integers r1, r2, … , rk, called residues, with 0 ≤ ri < 

mi for 1 ≤ i ≤ rk, there exists exactly one integer r, 0 ≤ r < m, such that  r mod m i = ri  for 1 ≤ i ≤ k.

The Chinese remainder theorem is used to represent integers in the range 0 ≤ r < m uniquely as k-tuples of their 

residues modulo mi. We denote this number representation by

r ~ [r1, r2, … , rk].

The practicality of modular number systems is based on the following fact: The arithmetic operations (+ , – , ·)  

on integers r in the range 0 ≤ r< m are represented by the same operations, applied componentwise to k-tuples [r 1, 

r2, … , rk]. A modular number system replaces a single +, –, or · in a large range by k operations of the same type in 

small ranges.

If r ~ [r1, r2, … , rk], s ~ [s1, s2, … , sk], t ~ [t1, t2, … , tk], 

then:

(r + s)mod m = t ⇔ (ri + si) mod mi = ti for 1 ≤ i ≤ k,

(r – s)mod m = t ⇔ (ri – si) mod mi = ti for 1 ≤ i ≤ k,

(r · s)mod m = t ⇔ (ri · si) mod mi = ti for 1 ≤ i ≤ k.

Example

m1 = 2 and m2 = 5, hence m = m1 · m2 = 2 · 5 = 10. In the following table the numbers r in the range 0 .. 9 are  

represented as pairs modulo 2 and modulo 5.

Let r = 2 and s = 3, hence r · s = 6. In modular representation: r ~ [0, 2], s ~ [1, 3], hence r · s ~ [0, 1].

A useful modular number system is formed by the moduli

m1 = 99, m2 = 100, m3 = 101, hence m = m1 · m2 · m3 = 999900.

Nearly a million integers in the range 0 ≤ r < 999900 can be represented. The conversion of a decimal number  

to its modular form is easily computed by hand by adding and subtracting pairs of digits as follows:

r mod 99: Add pairs of digits, and take the resulting sum mod 99.

r mod 100: Take the least significant pair of digits.

r mod 101: Alternatingly add and subtract pairs of digits, and take the result mod 101.

The largest integer produced by operations on components is 1002 ~ 213; it is smaller than 215 = 32768 ~ 32k and 

thus causes no overflow on a computer with 16-bit arithmetic.
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Example

r = 123456

r mod  99 = (56 + 34 + 12) mod 99 =   3

r mod 100 = 56

r mod 101 = (56 – 34 + 12) mod 101 = 34

r ~ [3, 56, 34]

s = 654321

s mod  99 = (21 + 43 + 65) mod 99 = 30

s mod 100 = 21

s mod 101 = (21 – 43 + 65) mod 101 = 43

s ~ [30, 21, 43]

r + s ~ [3, 56, 34] + [30, 21, 43] = [33, 77, 77]

Modular  arithmetic  has  some  shortcomings:  division,  comparison,  overflow  detection,  and  conversion  to 

decimal notation trigger intricate computations.

Exercise: Fibonacci numbers and modular arithmetic

The sequence of Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

is defined by 

x0 = 0, x1 = 1, xn = xn–1 + xn–2 for n ≥ 2.

Write (a) a recursive function (b) an iterative function that computes the n-th element of this sequence. Using 

modular arithmetic, compute Fibonacci numbers up to 108 on a computer with 16-bit integer arithmetic, where the 

largest integer is 215 – 1 = 32767.

(c) Using moduli m1 = 999, m2 = 1000, m3 = 1001, what is the range of the integers that can be represented 

uniquely by their residues [r1, r2, r3] with respect to these moduli?

(d) Describe in words and formulas how to compute the triple [r1, r2, r3] that uniquely represents a number 

r in this range.

(e) Modify the function in (b) to compute Fibonacci numbers in modular arithmetic with the moduli 999,  

1000, and 1001. Use the declaration

type  triple = array [1 .. 3] of integer;

and write the procedure

procedure modfib(n: integer; var r: triple);

Solution
(a) function fib(n: integer): integer;

begin

if  n ≤ 1  then  return(n)  else  return(fib(n – 1) + fib(n – 2))

end;

(b) function fib(n: integer): integer;

var  p, q, r, i: integer;

begin

if  n ≤ 1  then  return(n)
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else  begin

p := 0;  q := 1;

for  i := 2  to  n  do  { r := p + q;  p := q;  q := r };

return(r)

end

end;

(c) The range is 0 .. m – 1 with m = m1 · m2 · m3 = 999 999 000.

(d) r = d1 · 1 000 000 + d2 · 1000 + d3 with 0 ≤ d1, d2, d3 ≤ 999

1 000 000 = 999 999 + 1= 1001 · 999 + 1

1000 = 999 + 1 = 1001 – 1

r1 = r mod 999 = (d1 + d2 + d3) mod 999

r2 = r mod 1000 = d3

r3 = r mod 1001 = (d1 – d2 + d3) mod 1001

(e) procedure modfib(n: integer; var r: triple);

var p, q: triple;

i, j: integer;

begin

if  n ≤ 1  then

for  j := 1  to  3  do  r[j] := n

else  begin

for  j := 1  to  3  do  { p[j] := 0;  q[j] := 1 };

for  i := 2  to  n  do  begin

for  j := 1  to  3  do  r [j] := (p[j] + q[j]) mod (998 + j);

p := q;  q := r

end

end

end;

Random numbers

The colloquial meaning of the term at random often implies "unpredictable". But random numbers are used in 

scientific/technical  computing  in  situations  where  unpredictability  is  neither  required  nor  desirable.  What  is  

needed in simulation, in sampling, and in the generation of test data is  not unpredictability but certain statistical 

properties. A random number generator is a program that generates a sequence of numbers that passes a number 

of specified statistical tests. Additional requirements include: it runs fast and uses little memory; it is portable to  

computers that use a different arithmetic; the sequence of random numbers generated can be reproduced (so that a 

test run can be repeated under the same conditions).

In practice, random numbers are generated by simple formulas. The most widely used class, linear congruential 

generators, given by the formula

ri+1 = (a · ri + c) mod m

are characterized by three integer constants: the multiplier a, the increment c, and the modulus m. The sequence is  

initialized with a seed r0.

All  these  constants  must  be  chosen  carefully.  Consider,  as  a  bad  example,  a  formula  designed to  generate  

random days in the month of February:

r0 = 0,  ri+1 = (2 · ri + 1) mod 28.

It generates the sequence 0, 1, 3, 7,  15, 3,  7,  15, 3, … . Since 0 ≤ r i < m, each generator of the form above 

generates a sequence with a prefix of length < m which is followed by a period of length ≤ m. In the example, the 
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prefix 0, 1 of length 2 is followed by a period 3, 7, 15 of length 3. Usually we want a long period. Results from  

number theory assert that a period of length m is obtained if the following conditions are met:

• m is chosen as a prime number.

• (a – 1) is a multiple of m.

• m does not divide c.

Example
r0 = 0,  ri+1 = (8 · ri + 1) mod 7

generates a sequence: 0, 1, 2, 3, 4, 5, 6, 0, … with a period of length 

7.

Shall we accept this as a sequence of random integers, and if not, why not? Should we prefer the sequence 4, 1, 6,  

2, 3, 0, 5, 4, … ?

For each application  of  random numbers,  the programmer/analyst  has  to identify  the important  statistical  

properties required. Under normal circumstances these include:

No periodicity over the length of the sequence actually used.  Example: to generate a sequence of 100 random 

weekdays  ∈ {Su, Mo, … , Sat}, do not pick a generator with modulus 7, which can generate a period of length at  

most 7; pick one with a period much longer than 100.

A desired distribution, most often the uniform distribution. If the range 0 .. m – 1 is partitioned into k equally  

sized intervals I1, I2, … , Ik, the numbers generated should be uniformly distributed among these intervals; this must 

be the case not only at the end of the period (this is trivially so for a generator with maximal period m), but for any  

initial part of the sequence.

Many well-known statistical tests are used to check the quality of random number generators. The run test (the 

lengths  of  monotonically  increasing  and  monotonically  decreasing  subsequences  must  occur  with  the  right 

frequencies); the gap test (given a test interval called the "gap", how many consecutively generated numbers fall 

outside?);  the  permutation test (partition the sequence into subsequences  of  t  elements;  there  are  t!  possible  

relative orderings of elements within a subsequence; each of these orderings should occur about equally often).

Exercise: visualization of random numbers

Write a program that lets its user enter the constants a, c, m, and the seed r0 for a linear congruential generator, 

then displays the numbers generated as dots on the screen: A pair of consecutive random numbers is interpreted as 

the (x, y)-coordinates of the dot. You will observe that most generators you enter have obvious flaws: our visual 

system is  an excellent  detector  of  regular patterns,  and most  regularities  correspond to undesirable  statistical 

properties.

The point made above is substantiated in [PM 88].

The following simple random number generator and some of its properties are easily memorized:

r0 = 1,  ri+1 = 125 · ri mod 8192.

1. 8192 = 213, hence the remainder mod 8192 is represented by the 13 least significant bits.

2. 125 = 127 – 2 = (1111101) in binary representation.

3. Arithmetic can be done with 16-bit integers without overflow and without regard to the representation of 

negative numbers.
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4. The numbers rk generated are exactly those in the range 0 ≤ rk < 8192 with rk mod 4 = 1 (i.e. the period has 

length 211 = 2048).

5. Its statistical properties are described in [Kru 69], [Knu 81] contains the most comprehensive treatment of  

the theory of random number generators.

As a conclusion of this brief introduction, remember an important rule of thumb:

Never choose a random number generator at random!

Exercises

1. Work out the details of implementing double-precision, variable-precision, and BCD integer arithmetic, and 

estimate the time required for each operation as compared to the time of the same operation in single 

precision. For variable precision and BCD, introduce the length L of the representation as a parameter.

2. The least common multiple (lcm) of two integers u and v is the smallest integer that is a multiple of u and v. 

Design an algorithm to compute lcm(u, v).

3. The prime decomposition of a natural number n > 0 is the (unique) multiset PD(n) = [p1, p2, … , pk] of  

primes pi whose product is n. A multiset differs from a set in that elements may occur repeatedly (e.g.  

PD(12) = [2, 2, 3]). Design an algorithm to compute PD(n) for a given n > 0. 

4. Work out the details of modular arithmetic with moduli 9, 10, 11.

5. Among the 95 linear congruential random number generators given by the formula ri+1 = a · ri mod m,  

with prime modulus m = 97 and 1 < a < 97, find out how many get disqualified "at first sight" by a simple  

visual test. Consider that the period of these RNGs is at most 97.
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